1	(i)	$(5)^{2}$ 1	B3	B1 for $a = 5/2$ oe	$(5)^{2}$ 1
		$\left(\begin{array}{c} x - \frac{1}{2} \end{array}\right) - \frac{1}{4}$ oe		and M1 for $6 - their a^2$ soi;	condone $\begin{pmatrix} x - \frac{1}{2} \end{pmatrix} - \frac{1}{4}$ oe = 0
					condone omission of index –can earn all marks
					bod M1 for $6 - 4.25$ or $6 - 25/2$ etc, if bearing some relation to an attempt at $6 - their 2.5^2$; M0 for just 1.75 etc without further evidence
		$\begin{pmatrix} 5\\2,-4 \end{pmatrix}$ oe or ft	B1	accept $x = 2.5, y = -0.25$ oe	condone starting again and finding using calculus
			[4]		
			L - J		
1	(ii)	(2, 0) and (3, 0)	B2	B1 each	condone not expressed as coordinates,
				or B1 for both correct plus an extra	for both x and y values,
					accept eg in table or marked on graph
				or M1 for $(x - 2)(x - 3)$ or correct use of formula or for their $x + \sqrt{1 + \sin k}$ ff from (i)	
				formula of for their $a \pm \sqrt{their b}$ it from (1)	
		(0, 6)	B1		
-		graph of quadratic the correct way up and crossing both axes	B1	ignore label of their tp; condone stopping at <i>y</i> -axis	condone 'U' shape or slight curving back in/out; condone some doubling / feathering – deleted work sometimes still shows up in scoris; must not be ruled; condone fairly straight with clear attempt at curve at minimum; be reasonably generous on attempt at symmetry
			[4]		

1	(iii) $x^2 - 5x + 6 = 2 - x$		M1	for attempt to equate or subtract eqns or attempt at rearrangement and elimination of x	accept calculus approach: y' = 2x - 5	
			$x^2 - 4x + 4 = 0$	M1	for rearrangement to zero ft and collection of terms; condone one error; if using completing the square, need to get as far as $(x - k)^2 = c$, with at most one error $[(x - 2)^2 = 0$ if correct]	use of $y' = -1 M1$
			x = 2, [y = 0]	A1	condone omission of $y = 0$ since already found in (ii) if they have eliminated $x, y = 0$ is not sufft for A1 – need to get $x = 2$	x = 2 A1
			'double root at $x = 2$ so tangent' oe; www;	A1 [4]	A0 for $x = 2$ and another root eg 'only one point of contact, so tangent'; or showing $b^2 - 4ac = 0$, and concluding 'so tangent'; www	tgt is $y [-0] = -(x - 2)$ and obtaining given line A1

Question		on	er	Marks	Guidan	се
2	2 (i)		(-1, 6) (0,1) (1,-2) (2,-3) (3,-2) (4, 1) (5,6) seen plotted		or for a curve within 2 mm of these points; B1 for 3 correct plots or for at least 3 of the pairs of values seen eg in table	use overlay; scroll down to spare copy of graph to see if used [or click 'fit height'
						also allow B1 for $(2 \pm \sqrt{3}, 0)$ and $(2, -3)$ seen or plotted and curve not through other correct points
			smooth curve through all 7 points	B1 dep	dep on correct points; tolerance 2 mm;	condone some feathering/ doubling (deleted work still may show in scans); curve should not be flat-bottomed or go to a point at min. or curve back in at top;
			(0.3 to 0.5, -0.3 to -0.5) and (2.5 to 2.7, -2.5 to -2.7) and (4, 1)	B2	may be given in form $x =, y =$ B1 for two intersections correct or for all the <i>x</i> values given correctly	
2	(ii)		$\frac{1}{1} = r^2 - 4r + 1$	M1		
			$ x-3 - x - 4x + 1 1 = (x - 3)(x^2 - 4x + 1) $	M1	condone omission of brackets only if used correctly afterwards, with at most one error;	condone omission of '=1' for this M1 only if it reappears
						allow for terms expanded correctly with at most one error
			at least one further correct interim step with $=1$ or $=0$, as appropriate, leading to given answer, which must be stated correctly	A1	there may also be a previous step of expansion of terms without an equation, eg in grid	NB mark method not answer - given answer is $x^3 - 7x^2 + 13x - 4 = 0$
					if M0, allow SC1 for correct division of given cubic by quadratic to gain $(x - 3)$ with remainder -1 , or vice-versa	
				[3]		

Question		on	er	Marks	Guidance			
2 (iii) quadratic factor is		B2	found by division or inspection;					
			$x^2 - 3x + 1$		allow M1 for division by $x - 4$ as far as			
					$x^3 - 4x^2$ in the working, or for inspection			
					with two terms correct			
			substitution into quadratic formula or for completing the square used as far as	M1	condone one error	no ft from a wrong 'factor';		
			$(x - \frac{3}{2})^2 = \frac{5}{4}$ $\frac{3 \pm \sqrt{5}}{2}$ oe	A2	A1 if one error in final numerical expression, but only if roots are real	isw factors		

3		M1	for subst of x or y or subtraction to eliminate variable; condone one error;	
	$4x^2 + 25x + 21 \ [= 0]$	M1	for collection of terms and rearrangement to zero; condone one error;	or $4y^2 - 105y + 671$ [= 0]; eg condone spurious $y = 4x^2 + 25x + 21$ as one error (and then count as eligible for 3^{rd} M1);
	(4x + 21)(x + 1)	M1	for factors giving at least two terms of their quadratic correct or for subst into formula with no more than two errors [dependent on attempt to rearrange to zero];	or $(y - 11)(4y - 61)$; [for full use of completing square with no more than two errors allow 2nd and 3rd M1 s simultaneously];
	x = -1 or $-21/4$ oe isw	A1	or A1 for (-1, 11) and A1 for (-21/4, 61/4) oe	from formula: accept $x = -1$ or $-42/8$ oe isw
	y = 11 or 61/4 oe isw	A1		
3	(ii) $4(x+3)^2 - 5$ isw	4	B1 for $a = 4$, B1 for $b = 3$, B2 for $c = -5$ or M1 for $31 - 4 \times \text{their } b^2$ soi or for $-5/4$ or for $31/4$ – their b^2 soi	eg an answer of $(x + 3)^2 - {}^5/_4$ earns B0 B1 M1 ; 1(2x + 6) ² - 5 earns B0 B0 B2 ; 4(earns first B1 ; condone omission of square symbol
3	(iii)(A) $x = -3$ or ft (-their b) from (ii)	1		0 for just -3 or ft; 0 for $x = -3$, $y = -5$ or ft
3	(iii)(B) –5 or ft their c from (ii)	1	allow $y = -5$ or ft	0 for just $(-3, -5)$; bod 1 for $x = -3$ stated then $y = -5$ or ft

4	(i)	(2x-3)(x+1)	M2	M1 for factors with one sign error or giving two terms correct allow M1 for $2(x - 1.5)(x + 1)$ with no better factors seen
		x = 3/2 and -1 obtained	B1	or ft their factors
4	(ii)	graph of quadratic the correct way up and crossing both axes crossing <i>x</i> -axis only at $3/2$ and -1 or ft from their roots in (i), or their factors if roots not given crossing <i>y</i> -axis at -3	B1 B1 B1	for $x = 3/2$ condone 1 and 2 marked on axis and crossing roughly halfway between; intns must be shown labelled or worked out nearby
4	(iii)	use of $b^2 - 4ac$ with numbers subst (condone one error in substitution) (may be in quadratic formula) 25 - 40 < 0 or -15 obtained	M1 A1	may be in formula or $(x - 2.5)^2 = 6.25 - 10$ or $(x - 2.5)^2 + 3.75 = 0$ oe (condone one error) or $\sqrt{-15}$ seen in formula or $(x - 2.5)^2 = -3.75$ oe or $x = 2.5 \pm \sqrt{-3.75}$ oe

4	(iv)	$2x^2 - x - 3 = x^2 - 5x + 10 \text{ o.e.}$	M1	attempt at eliminating <i>y</i> by subst or subtraction
		$x^2 + 4x - 13 = 0$	M1	or $(x + 2)^2 = 17$; for rearranging to form $ax^2 + bx + c$ [= 0] or to completing square form condone one error for each of 2 nd and 3 rd M1s
		use of quad. formula on resulting eqn (do not allow for original quadratics used)	M1	or $x+2=\pm\sqrt{17}$ o.e. 2nd and 3rd M1s may be earned for good attempt at completing square as far as roots obtained
		$-2\pm\sqrt{17}$ cao	A1	